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ABSTRACT

REPLICA EXCHANGE MONTE CARLO SIMULATIONS OF THE
ISING SPIN GLASS:

STATIC AND DYNAMIC PROPERTIES

SEPTEMBER 2013

BURCU YUCESOY

B.Sc., ISTANBUL TECHNICAL UNIVERSITY

M.Sc., ISTANBUL TECHNICAL UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Jonathan Machta

Spin glasses have been the subject of intense study and considerable controversy for

decades, and the low-temperature phase of short-range spin glasses is still poorly under-

stood. Our main goal is to improve our understanding in this area and find an answer to the

following question: Are there only a single pair or a countable infinity of pure states in the

low temperature phase of the EA spin glass? To that aim we first start by introducing spin

glasses and provide a brief history of their research, then proceed to describe our method

of simulation, the parallel tempering Monte Carlo algorithm. Next, we present the results

of a large-scale numerical study of the equilibrium three-dimensional Edwards-Anderson

Ising spin glass with Gaussian disorder. In order to understand how the parallel tempering

algorithm works, we measure various static, as well as dynamical quantities, such as the

autocorrelation times and round-trip times for the parallel tempering Monte Carlo method.

We examine the correlation between static and dynamic observables for ∼ 5000 disorder

vi



realizations and up to 1000 spins down to temperatures at 20% of the critical temperature,

and our results show that autocorrelation times are directly correlated with the roughness

of the free-energy landscape. In the following chapters, the three- and four-dimensional

Edwards-Anderson and mean-field Sherrington-Kirkpatrick Ising spin glasses are studied

again via large-scale Monte Carlo simulations at low temperatures, deep within the spin-

glass phase. Performing a careful statistical analysis of several thousand independent dis-

order realizations and using an observable that detects peaks in the overlap distribution,

we show that the Sherrington-Kirkpatrick and Edwards-Anderson models have a distinctly

different low-temperature behavior. We arrive to the following conclusion: The structure

of the spin-glass overlap distribution for the Edwards-Anderson model suggests that its

low-temperature phase has only a single pair of pure states. Finally we present results for

several new observables, along with a few preliminary studies and suggestions for future

research.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In 1988, Philip Anderson wrote in the columns of Physics Today [4]:

The history of spin glass may be the best example I know of the dictum
that a real scientific mystery is worth pursuing to the ends of the Earth for it’s
own sake, independently of any obvious practical importance or intellectual
glamor.

As one does not judge a book by solely on its cover, a topic of research can or should

not be judged solely on the apparent practical applications, or the perceived fame it would

bring to the researcher. Every open question is worth pursuing, and what seems to be a dire

prospect at first glance, can end up being a major discovery and a source of inspiration.

It was certainly the case for spin glasses. Let us start from the beginning: A disordered

magnetic material such as the spin glass does not seem very exciting at first glance. If it is

metallic, it cannot conduct well, and as insulators, they are practically useless [66]. Then

why have they attracted not only many condensed matter and statistical physics, but also

complexity scientists and even mathematicians? Let us again quote from Anderson:

The pursuit of the spin glass mystery led, inter alia and aside from all the
good solid-state physics that resulted, to new algorithms for computer opti-
mization, a new statistical mechanics, a new view of protein structure, a new
view of evolution and new ideas in neurosciences.

And why that happened has many answers. First, these are seemingly simple systems,

described by a one line equation, not all that different from the simplest of many body

statistical models, the Ising model. Therefore, they are easy to picture conceptually and

easy to start working on. The ‘simplicity’ ends there, however. Spin glasses are complex
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systems. They exhibit both frustration and quenched disorder, their behavior is very hard

to predict. Together, these properties make spin glasses one of the simplest of complex

systems, and consequently an ideal candidate for all complexity studies. Second, finding

their ground state is a hard combinatorial optimization problem, therefore mathematical

tools developed for those studies are invaluable for analyzing many real world problems.

Finally, on the pure physics side, they represent a gap in our understanding of the solid

state: The structural glass in general is a poorly understood material [66]. Even the basic

question why a window glass is rigid when it does not have a crystalline structure has not

been answered to everyones satisfaction. Here, the magnetic counterpart the spin glass,

which can easily be described and modeled mathematically, can be a great starting point,

before moving on to much complicated ordinary glasses.

Despite all the interest spin glasses generated over the years, and despite all the re-

sources allocated to their research resulting in countless published work, these systems are

still not fully understood. Today, nearly half a century after their first discovery, even for the

simplest mathematical model there are many completing theories, each with considerable

number of supporters. And therein lies our main motivation as well. The main purpose

of this document is to understand the behavior of the spin glass at low temperatures, by

studying the mathematical model constructed by Edwards and Anderson back in 1975, and

to be able decide which of the proposed explanations is the correct one. To that end, we

now present a brief historical description of spin glasses and their research so far. For a

more detailed outlook, one can consult the many books and review articles on the topic,

some of which we are referencing here [10, 43, 22, 48].

1.2 Spin Glasses

1.2.1 ‘Real’ Spin Glasses

The ‘real’ spin glasses are alloys, in which a non-magnetic host metal is mixed with

trace amounts of magnetic transition metals. These ‘impurities’ then occupy random sites,
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and their magnetic dipoles or spins magnetically polarize the conduction electrons of the

host metal. This polarization can be ferromagnetic at some distances, and antiferromag-

netic in others, and as other impurity spins try to align themselves according to the thusly

created local magnetic fields, interactions between impurities that are randomly ferromag-

netic or antiferromagnetic are created. Historically, the first types of spin glasses that have

been studied were hosts of copper (Cu) or gold (Au) with impurities of manganese (Mn)

or iron (Fe), hence, we can consider the the alloys Cu1−xMnx or Au1−xFex the ‘classical’

spin glasses. Here x denotes the concentration of impurities and is usually < 0.1 for spin

glasses. And the classical spin-spin interaction J(r) with respect to the distance r between

spins is of RKKY-type (named for Ruderman, Kittel, Kasuya and Yoshida) and defined as

J(r) ∝ cos(Ar)

Br3
, (1.1)

where A and B are constants related to the materials used. In summary, the couplings

oscillate between ferro- and antiferromagnetic nature and their strengths diminish as 1/r3.

The research on spin glasses first started gain momentum in the 1970s following some

surprising results observed in experiments: When subjected to a small oscillating magnetic

field, the magnetic susceptibility χ (defined as χ = δM/δh where M is the magnetiza-

tion and h is the external magnetic field) of CuMn and AuFe shows a cusp at a specific

temperature [13]. This cusp that would increase in magnitude and in temperature as the

concentration of impurities increases was surprising and needed to be understood, espe-

cially since the specific heat is not diverging at the same temperatures, showing that the

energy fluctuations themselves are not divergent. This physically interesting phenomenon

has been only observed at low temperatures; the high temperature behavior is paramag-

netic, i.e. the spins rotate randomly, independent from each other. The spin glass transition

has been found to occur at a well defined critical temperature Tc. Below Tc, the average

magnetization is still zero, but unlike the paramagnetic phase where each spin is constantly

changing directions, now the spins are frozen in their places, in random orientations. This
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creates local spontaneous magnetizations which are the cause for the decrease in χ at these

low temperatures, even though no conventional structural long range order of ferro- or

antiferromagnetic nature can be detected.

In summary, the essential features of spin glasses seem to boil down to two impor-

tant ingredients: Randomness, and competing interactions. The couplings between spins

have random signs, i.e. they are randomly of ferromagnetic or antiferromagnetic nature,

and therefore, no spin configuration can satisfy all couplings simultaneously. This effect

is called frustration. And as noted, no conventional long range order can be established,

instead a freezing transition occurs to a state where the spins are frozen in random orien-

tations. This freezing behavior actually gives the system its name; it is reminiscent of the

translational disorder in the atomic arrangement of an ordinary glass.

1.2.2 The Edwards-Anderson Model

Edwards and Anderson are considered to have initiated the modern theory of spin

glasses as we regard them now, by noting that the competition between quenched ferro-

magnetic and antiferromagnetic couplings define the essential physics, and not other mi-

croscopic details [17]. They proposed the prominent theoretical model for spin glasses,

which is known as the Edwards-Anderson (EA) model. Here, spins are located on sites of

an hypercubic lattice of D dimensions. The couplings Jij are between nearest neighbor

spins, and chosen according to a Gaussian distribution

P (Jij) =
1√
2πδ

exp
(−(Jij − µ)2)

2δ2

)
, (1.2)

where the variance δ is usually unity and the mean µ = 0. Alternatively, there is a binary

version where Jij is chosen to be ±J randomly. Since the couplings are chosen once and

then keep their value, the disorder is called to be quenched. The standard Hamiltonian

HJ = −
∑
〈i,j〉

Jijsisj − h
∑
i

si (1.3)
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?

Figure 1.1. Example of a frustrated square, where solid lines denote ferromagnetic and
dashed lines denote antiferromagnetic interactions.

is then sufficient to explore the nature of the state. Here, i is a site on the hypercubic

lattice, si and sj are the Ising spins on those sites that can be up or down, hence si ∈

{±1}. The sum 〈i, j〉 is over the nearest neighbor pairs only, and h stands for the external

magnetic field. We will, from now on, only consider the case h = 0 where the model

has global spin-flip symmetry, provided that µ defined above is also zero. A positive Jij

indicates a ferromagnetic and a negative one an antiferromagnetic coupling, and since these

are randomly distributed, competitions arise. An example of the frustration caused by this

competition can be seen in Fig. 1.1. In this square, one coupling (dashed line) is negative

and the remaining three (solid lines) are positive, therefore, aligning the top right spin

correctly to satisfy both neighboring couplings is not possible.

For this model, under the freezing temperature Tc, the magnetization per spin M would

always be zero, and consequently a new order parameter is needed to define the spin glass

order. Edwards and Anderson suggested that

qEA = lim
N→∞

1

N

N∑
i=1

〈si〉2, (1.4)
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would be sufficient. Here N is the total number of spins and 〈 〉 denotes a thermal average.

This way one can identify the two properties of the spin glass phase asM = 0 and qEA > 0.

Even after more than three decades of research, this simple model is not fully under-

stood. It is now known that for D = 2, there is no spin glass phase for T > 0 [64]. For

the higher dimensional models, however, finite transition temperatures exist [8], but how

these models would behave deep within the spin glass phase is still a topic of high inter-

est. There are competing theories, first of which was developed based on the mean field

approximation of the model.

1.2.3 The Mean Field Theory and the Replica Symmetry Breaking Picture

One important step in understanding spin glasses was a model developed by Sherring-

ton and Kirkpatrick in 1975 [63]. They proposed that the correct mean field approach to the

EA model would be a model where all spins are coupled to each other regardless of their

distance. This model is called the Sherrington-Kirkpatrick (SK) model, and even though

it is physically unrealistic to explain real spin glasses, solving it should help to establish a

theory to build upon by adding corrections due to short range interactions later.

To solve this model, one needs first to determine the average free energy, and since

this is a system with randomness, an average over disorder realizations has to be taken in

addition to the usual thermal averaging. To that end, we start with the partition function

Z =
∑
J

exp
(−HJ

kBT

)
, (1.5)

where kB is the Boltzmann factor and the sum is over all possible disorder realizations, and

then take the logarithm to obtain the free energy

F = −kBT lnZ. (1.6)

To calculate a disorder average of this logarithm is extremely difficult, so instead Sherring-

ton and Kirkpatrick came up with an approximation called the replica ansatz. Here, one
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studies the n-th power of the partition function, which can be averaged easily and then use

the following equality

lnZ = lim
n→0

[ 1

n
(Zn − 1)

]
. (1.7)

The idea behind is that the n-th power would represent n identical replicas of the original

system, and after the averaging process, the n → 0 limit can be taken. This is called the

replica symmetric solution, since all the replicas are treated as equal.

This solution captured the essence of the experiments by showing the cusp in suscep-

tibility at the critical temperature, however, at very low temperatures, the entropy would

become unphysically negative. Four years later, Georgio Parisi finally came up with a cor-

rect solution, which is now called the replica symmetry breaking (RSB) solution [56, 58,

57, 59], since now the replicas are considered not to be identical. Instead, they correspond

to the many pure states that exist at low temperatures. A pure state means an equilibrium

distribution in the thermodynamic limit that cannot be expressed as a linear combination of

other distributions and according to the RSB solution, there has to be an infinite number of

those pure states resembling or differing from each other in varying degrees. One can then

define an order parameter by comparing those states to each other by measuring their spin

overlap. If we consider two such states α and β, their spin overlap will then be

qα,β =
1

N

∑
i

〈si〉α〈si〉β, (1.8)

where the 〈 〉 denotes a thermal average. One can see that for α = β, one recovers the

Edwards-Anderson order parameter qEA. Since the spin overlap can only compare two

states at a time, it is more informative to consider its probability distribution. RSB states

that at finite but low temperatures, for a given disorder realization, only a few among the

infinite number of states will have weights large enough to be noticeable. Therefore, even

in the thermodynamic limit, the positions and weights of all overlaps between ±qEA will

depend on the disorder realization J and the overlap probability distribution PJ(q) will
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not have a unique shape (Fig. 1.2, left), i.e. it will be non-self-averaging. The disorder

average P (q) will have a continuous part and a non-zero value near q = 0, which becomes

a constant independent of system size for large L (Fig. 1.2, right). The RSB solution fully

Figure 1.2. The left-hand side picture is a sketch of the overlap probability distribution
as described in the RSB picture PJ(q) for a sample disorder realization J . For different
realizations, the states will also be different, thus changing the location of the inside peaks.
On the right, a sketch of P (q) as a disorder average over all PJ(q) is shown.

explains all aspects of the SK model and is now known to be the correct mean field solution.

It is from this exact solution that the RSB picture for the EA model is constructed [10, 43].

There, we have a system with short range interactions, and the RSB picture states that there

must be again a countable infinity of pure states with varying overlaps. Consequently,

the overlap probability distribution will be non-self-averaging and fluctuations between

disorder realization samples will always be significant, independent of system size. Even

though these features are proven to hold for the SK model, they are only conjectured for the

short range models. In fact, in the following section we present a competing theory with

very different implications.

1.2.4 The Droplet Picture

This scenario, called the ‘droplet’ or ‘scaling’ picture, proposes a phenomenologi-

cal scaling approach and has been independently developed by McMillan [42], Bray and
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Moore [12] and Fisher and Huse [19, 20, 21]. It is based on an analysis of how the en-

ergy cost of flipping a large region of spins would depend on the size of that region. Here,

the lowest energy excitation spanning the length L around a particular spin site is called a

droplet. To flip one such droplet one needs an energy of order Lθ, where θ is the droplet

exponent. Additionally, these droplet excitations are not space-filling since their surface is

a fractal of dimension ds, where ds is smaller than the space dimension. In comparison,

in the RSB picture the energy of flipping a cluster of length scale L would remain of or-

der O(1) even if L grows infinitely big (θRBS = 0), and the surface dimension ds of the

excitations would be the same as the space dimension.

The main implication of the droplet picture is that in the spin glass phase, there can only

be one pair of pure states which are related by the spin flip symmetry, like in a ferromagnet.

Consequently, the resulting P (q) will be self-averaging and in the thermodynamic limit it

will solely consist of two δ peaks at q = ±qEA (Fig. 1.3). For finite systems, the droplet

Figure 1.3. Sketch of the overlap probability distribution as described in both the droplet
and the chaotic pairs pictures.

exponent θ relates the domain wall excitation energy to the system size, and from this

relation the droplet picture predicts that the temperature and size dependence of P (q =

0) should scale like TL−θ. θ can be measured using different excitations generated by

changing the boundary conditions (BC), e.g. from periodic to antiperiodic. According

9



to the droplet picture, such a change would have no effect on spins far away from the

boundary.

1.2.5 Intermediate Theories

So far we have seen two theories about the low temperature of the EA spin glass that are

firmly in disagreement with each other. In this section we consider intermediate theories

attempting the reconcile those differences.

One of the most prominent of these is the ‘chaotic pairs’ picture, which was developed

by Newman and Stein based on rigorous mathematical calculations [49, 50, 51, 52, 53].

Their metastates idea can be seen as the unifying theory, which is intended to move the

focus away from the traditional thermodynamic states to probabilistic distributions of those,

i.e. ensembles of thermodynamic states. Here, each finite volume sample can have only

a single pair of spin-flip related states, but unlike the droplet picture, now that pair will

vary chaotically with system size L, giving this picture a very different thermodynamic

structure. It could actually be considered a many-state picture, but unlike the RSB, only a

single pair of states appear in a large volume and the chaotic size dependence of that pair

results in not a countable, but an uncountable infinity of states. Here the overlap probability

distribution P (q) cannot distinguish between the droplet and the chaotic pairs pictures as

can be seen from Fig. 1.3.

Another such intermediate theory is the ‘trivial-nontrivial’ picture, developed by Krzkala

and Martin [37], and Palassini and Young [55]. Here, the energy of the low-lying excita-

tions does not increase with the size of the excitation like in the droplet picture, but unlike

the RSB picture, those excitations have fractal surfaces, i.e. they are not space-filling. Ad-

ditionally, a new scaling exponent θ′ is proposed. In this scenario, unlike the original θ

which measures the change in the energy of a cluster when it is excited by changing the

boundary conditions, θ′ measures the change in the energy of a cluster when the excitations
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are happening within the system with fixed boundaries. For the droplet picture, these two

exponents θ and θ′ should be the same [47].

1.3 Our Approach

Now that we have summarized the theoretical framework and predictions about the

nature of the low temperature phase of spin glasses, we can concentrate on our contribution

which is presented in the following chapters. Our main focus is to decide which of the

proposed theories correctly describes the number of pure states, and to specifically answer

the following question: Are there only a single pair or a countable infinity of pure states in

the low temperature phase of the EA spin glass?

Our research is based on numerical simulations done using the parallel tempering Monte

Carlo algorithm [23, 40, 25]. Therefore, in Ch. 2 we explain this algorithm in detail as well

as the way we implement it to simulate spin glasses. We go into the details of how the

algorithm was developed and how it works as it is applied to spin glasses, the advantages

of using this method as opposed to single spin flip Monte Carlo schemes, and also explain

how we implemented it.

The following chapter, Ch. 3, explains the dynamics at work when we are simulating

spin glasses. The main concern there, in general, is to ensure equilibrium for all disorder

realizations simulated, since unequilibrated samples may lead to erroneous conclusions by

having significant effects on the averages and fractions calculated. We therefore investigate

several time scales such as the round trip and autocorrelation times and their validity as

markers of equilibration, as well as possible factors contributing to the long equilibration

times known to be expected when simulating systems with complex free energy landscapes

such as spin glasses. We lay out a rigorously tested, effective method for ensuring full

equilibration, which we then proceed to use in our subsequent research. The contents of

this chapter has been published as a paper in 2013 [74].
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In Ch. 4 we finally approach our main question, the single or many pairs problem. To

that end, we introduce a new statistic that clearly distinguishes between the two scenarios

and then present results from simulations of the 3D EA as well as the SK model. For the

SK model, our main purpose is to observe the properties described by the RSB picture,

since it is known to be the exact solution of the model. We then compare those properties

to the observations made on the 3D EA model at same reduced temperatures to see if the

two models behave in a similar fashion, i.e. if the mean field approach can fully explain

the low temperature phase of the EA model as well. The contents of this chapter has been

published as a paper in 2012 [73] and 2013 [72].

The next chapter, Ch. 5, contains complementary material to Ch. 4 based on our most

recent research done after our paper [73] was published, as well as some preliminary ex-

plorations to motivate future projects. First of all we show results from another simulation,

this time the 4D EA model, which we then compare to previously simulated models. Sec-

ond, we investigate several new observables that have been suggested by Middleton [45]

and Monthus [46], using our data. We then consider the behavior of observables within a

small window embedded in a larger system and how its behavior will be affected by size, to

address a concern first raised by Ref. [49], which states that for small systems, boundaries

will introduce domain walls to the system causing droplet-like excitations, thus affecting

the results. Finally we present a preliminary look at the effects of changing the boundary

conditions on systems with fixed bond configurations.

Our final chapter contains a summary of our conclusions and several future project ideas

worth exploring, motivated by those conclusions. You can find additional details such as

proof of detailed balance for the parallel tempering Monte Carlo and information about

how we create, store and analyze the data in the appendices.
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CHAPTER 2

NUMERICAL METHODS

2.1 Introduction

Our method of simulation is the parallel tempering algorithm. This method is also

known as the replica exchange Monte Carlo and was independently introduced by Geyer

[23], Marinari and Parisi [40], as well as Hukushima and Nemoto [25]. Furthermore, an

earlier algorithm with many of the same essential features was introduced by Swendsen

and Wang [67]. In parallel tempering, many copies of the system at different temperatures

are simulated in parallel. Each copy (henceforth referred to as ‘replica’) is simulated using

a standard, single-temperature Monte Carlo scheme such as the Metropolis or heat bath

algorithms [36].

In addition to the single-temperature Monte Carlo moves, there are also replica ex-

change moves in which replicas at neighboring temperatures swap their temperatures.

These moves permit replicas to diffuse in temperature space [32], from the lowest tem-

perature to the highest temperature and back again. These round trips enhance mixing

and greatly reduce equilibration times for systems with rough energy landscapes. Another

advantage of this method is that it allows one to check the temperature dependence of

observables since it provides data for various temperatures in a single run.

In this chapter we first explain the parallel tempering algorithm in detail, and then

show how we implement this algorithm to simulate the Ising spin glass, using the C++

programming language.
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2.2 Parallel Tempering Algorithm

Parallel tempering is a powerful tool for simulating systems with rough free-energy

landscapes [16, 32, 38], with applications across many disciplines. To date, it is the most

efficient method for simulating spin glasses and other disordered systems in more than two

dimensions at low temperatures where dynamics are slow.

The algorithm works as described in Fig. 2.1: Several replicas of the system with the

same disorder are simulated in parallel, each at a different temperature. To do this, a stan-

dard Markov chain Monte Carlo (MCMC) technique such as the Metropolis or heat bath

algorithm [54, 36, 29] is used. In this work we employ the heat bath algorithm because of its

better performance at low temperature. The set of temperatures is chosen to span both the

low temperatures of interest, where equilibration is not feasible using single-temperature

MCMC methods, and high temperatures where equilibration is fast. In addition to the

MCMC sweeps at each temperature, there are also replica exchange moves between repli-

cas. A proposed replica exchange move involves swapping the temperatures of two replicas

at neighboring temperatures. In order to satisfy detailed balance [54] and ensure that the

entire set of replicas equilibrates, the probability for accepting such a swap needs to be

p = min[1, e(β−β
′)(E−E′)]. (2.1)

Here β = 1/T is the inverse temperature of one replica, β′ is the inverse temperature of

the neighboring replica, and E and E ′ are the corresponding energies of the two afore-

mentioned replicas. These moves permit replicas to diffuse in temperature space [32] and

this diffusion process permits an enormous speed-up relative to single-temperature Monte

Carlo. Instead of directly surmounting the high free-energy barriers present at low tem-

peratures, barriers are indirectly surmounted via the following process: A replica in one

free-energy well at the lowest temperature diffuses to the highest temperature where it eas-

ily moves to another well and then diffuses back to the lowest temperature. This process

is called a “round trip”. The whole diffusion process allows parallel tempering to reduce
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exponential time scales for surmounting free-energy barriers to power law time scales [38],

thus reducing the equilibration time tremendously, even though that time is still growing

exponentially with system size. As we explain in our dynamics chapter (Ch. 3), a complete

round trip is not always necessary to ensure equilibration.

Figure 2.1. A sketch of how parallel tempering algorithm works: R copies of the system at
different temperatures are simulated in parallel. The set of temperatures includes both high
temperatures (where rapid equilibration is possible) and low temperatures of interest (where
equilibration is hard). The replica exchange moves (swapping of two adjacent copies)
permit replicas to diffuse in temperature space, as shown by the large arrows.

As noted, Equation (2.1) ensures that the entire Markov chain, including both single-

temperature MCMC sweeps and replica exchange moves, converges to equilibrium and

satisfies detailed balance. A proof of the latter can be found in Appendix A.

The parallel tempering algorithm has free parameters that include the set of temper-

atures and the ratio of single-temperature sweeps to replica-exchange sweeps. Optimiz-

ing parallel tempering therefore requires an appropriate choice of these parameters. The

choice of the number of replicas NT and their temperatures involves the following trade-

off: If there are many closely-spaced temperatures, the energy distribution between adja-

cent temperatures overlaps strongly and the probability that a proposed replica exchange

is accepted, see Eq. (2.1), is large. This suggests that the more replicas one uses, the bet-

ter apart from the extra computational work involved in carrying out single-temperature

sweeps of each replica. However, the motion of replicas in temperature space is diffusive

15



such that the time scale for a round-trip scales approximately as the square of the number

of temperatures. At least for simple model systems, parallel tempering is optimized if the

number of temperatures scales as the square root of the number of spins [38], and a geo-

metric progression of temperatures is used [29]. The average time to complete one round

trip is often used to characterize the performance of parallel tempering, therefore choosing

a set of temperatures that minimizes the round trip time is also one of the ways proposed

to optimize parallel tempering [32, 70, 11]. However, in Ch. 3 we find that using the round

trip time for optimization purposes can be misleading. Instead, the acceptance ratio of pro-

posed swaps as a function of temperature can be considered a good measure for efficiency.

Ideally, this ratio should be between ∼ 20− 80% and roughly independent of temperature,

and large fluctuations should be avoided not to break up the random walk into segments in

the temperature space. As a result, the best method for deciding on a temperature set is to

run a preliminary, short simulation to test these acceptance ratios, starting with an initial,

geometrically progressing temperature set. One can then use the information for further

adjustments, such as adding intermediate temperatures where the ratios are low.

2.3 Implementation

In this section we explain the way we implemented the parallel tempering algorithm,

using the C++ programming language.

Our program starts with an initialization function. In this function, all couplings Jij are

randomly selected from a Gaussian distribution of mean zero and standard deviation unity

and all spins in every replica are chosen randomly as ±1. We store the random number

generator seed for the couplings to identify the different disorder realizations, so we can

reproduce those runs if necessary. Then, the initial energies are calculated for allR replicas

in both sets.

A single time-step of the simulation consists of nested loops with two characteristic

moves: First, we have the sweep move for the single-temperature MCMC updates, where
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we update each spin in a replica sequentially using the heat bath algorithm. Second, we

repeat the swap move corresponding to the replica exchange between temperatures R − 1

times, choosing one random neighboring pair to swap each time. This can also be done

sequentially, without disturbing detailed balance. In our simulation, one sweep move for

every replica is then followed by R − 1 swap moves, and together they make up one time-

step, which is shown in the code below:
1 for (s=0; s<2; s++) {
2 for ( t=0; t< R; t++) sweep(t , s)
3 for ( i=0; i<(R−1); i++) swap(s);
4 }

The variable s here distinguishes between the two sets of replicas of the system we are

simulating, since we need two separate sets to calculate our order parameter. The variable

t accounts for which of the replicas we are updating, and the variable i accounts for the

number of swap moves.

Before going into the details of the two moves, let us first explain how we assign tem-

peratures to replicas in order to implement the parallel tempering algorithm. We have a two

dimensional array called map[t][s], where the second index is just the set number. The first

index points to the temperature we are working at, referring to the temperature array T[t].

The value of the mapping array points to the replica ‘r’ we are using, such that r=map[t][s].

As such, the swap( ) function simply updates this mapping array in accordance with the

probability given in Eq. 2.1. Both sweep( ) and swap( ) functions are given below.
1 void swap(int s)
2 { int r , pair , temp;
3 double P,rand;
4

5 // select a neighboring replica pair at random:
6 pair=random range(0, R−2);
7

8 // compute the probability of a swap:
9 P=(1./T[pair ]−1./T[pair +1])∗(E[map[pair][ s ]][ s]−E[map[pair+1][s ]][ s ])

10

11 // carry out swap:
12 if (P>=0) {
13 temp=map[pair][s ]; map[pair ][ s]=map[pair+1][s ]; map[pair+1][s]=temp;
14 }
15 else { rand=random( );
16 if (rand<exp(P)) {
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17 temp=map[pair][s ]; map[pair ][ s]=map[pair+1][s ]; map[pair+1][s]=temp;
18 }
19 }
20 }

1 void sweep ( int t , int s)
2 {
3 int r ;
4 double delta =0.0;
5 r=map[t][s ];
6

7 for ( int i = 0; i < N; i++){
8

9 // compute the energy difference if spin is flipped :
10 delta = 2.∗(double)s[ i ][ r ][ s]∗h[ i ][ r ][ s ];
11

12 // use delta to compute probability and carry out the flip :
13 if (((1. + exp ((1./ T[t ])∗ delta ))∗random( )) < 1.0){
14 s[ i ][ r ][ s]=−s[i ][ r ][ s ];
15 for ( int j = 0; j < N; j++){
16 h[ j ][ r ][ s] += s[ i ][ r ][ s]∗J[ j ][ i ]; // update h accordingly
17 }
18 E[r ][ s]+= delta ; // update energy accordingly
19 }
20

21 }
22 }

Here h[i][r][s] = (1/2)
∑

j s
s,r
j Jij , where the sum is over all neighbors of si; and E[r][s]

stands for energy, both for the replica r of set s. Please note that the way h is updated in

the above code is intended for the fully connected SK model, where the sum in line 15 is

over all spins N. For finite dimensional models such as the EA it would be more efficient

to sum over the number of neighbors Nb, and compute h using only the neighboring spins.

In Markov chain Monte Carlo simulations such as ours, right after the initializing part

there needs to be an initial thermalization where the code is run for many time-steps without

taking any measurements. This is done to ensure independence from the initial conditions.

In our case, we employ equal amounts of thermalizing and measuring time-steps. Also, we

typically measure observables every 100th time-step to minimize correlations. Additional

details about how we generate, analyze and present the data can be found in Appendix B.
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CHAPTER 3

DYNAMICS

3.1 Introduction

Systems in statistical physics with rough free-energy landscapes, such as spin glasses,

are notoriously difficult to equilibrate using Markov chain Monte Carlo methods. The

basic reason for this difficulty is that extremely long times are required to surmount free-

energy barriers and thus to efficiently and fully explore the minima in the free-energy land-

scape. The parallel tempering algorithm (also known as “replica exchange Monte Carlo”)

[23, 40, 25], as well as other multicanonical techniques [28, 7] have partially overcome this

problem. However there is little understanding of the relevant time scales for these meth-

ods. The purpose of the work presented in this chapter is to shed light on the equilibration

time of the parallel tempering algorithm and to understand how it is related to equilib-

rium properties such as the roughness of the free-energy landscape. To this end, we apply

parallel tempering to a large ensemble of disorder realizations of the three-dimensional

Edwards-Anderson (EA) Ising spin glass [17, 10]. Our main results are that equilibration

times vary significantly from one disorder realization to another and that this variation is

correlated with the structure of the free-energy landscape. The fact that equilibration times

are broadly distributed has been previously noted in a different context (see, for example,

Refs. [1] and [2]) but the extent of variation was not fully appreciated because different

measures of equilibration time were used in past studies. The correlation of dynamic time

scales for parallel tempering and equilibrium properties has not been previously recog-

nized, again because of the use of insensitive measures of dynamic time scales. In this

study we compute autocorrelation functions of observables to measure equilibration times
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whereas previous studies have primarily relied on the round-trip time and related quantities.

Although our study is focused on parallel tempering and the Edwards-Anderson Ising spin-

glass model, we believe that our qualitative results are likely to be relevant both to other

disordered systems with rough free-energy landscapes, as well as other multicanonical sim-

ulation techniques such as umbrella sampling methods [69], the Wang-Landau algorithm

[71], and simulated tempering [40].

In the context of simple models with rough free-energy landscapes it has recently been

shown [38] that the equilibration time of parallel tempering depends strongly on the struc-

ture of the free-energy landscape. If there is a single dominant minimum in the landscape

and no first-order transition within the range of temperatures, then the equilibration time

is short. On the other hand, the presence of several nearly degenerate minima or the ex-

istence of a first-order transition leads to much longer equilibration times. These results

in simple model landscapes prompted us to look for similar phenomena in the Edwards-

Anderson model where different disorder realizations may have quite different free-energy

landscapes. In this study, rather than measuring the free-energy landscape directly, we

used the spin overlap (order parameter) distribution as a proxy. The overlap distribution is

closely related to the free-energy landscape but is substantially easier to measure in simu-

lations. When the free-energy landscape has a simple shape consisting of only one minima

or ‘well’, the system will have only one pair of preferred spin configurations related by

spin-flip symmetry, and correspondingly the overlap probability distribution will only have

two peaks at ±qEA (Fig.3.2 (a)). If there are many minima in the free-energy landscape,

however, systems will spend considerable time in different wells. Consequently, their spin

configurations will differ or overlap in varying degrees, resulting in many peaks of various

heights and shapes in the overlap probability distribution (Fig.3.2 (b)). Based on the results

from simple model free-energy landscapes, we hypothesize that when the overlap distribu-

tion has a complex structure implying many free-energy minima the time scale for parallel
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tempering will tend to be longer than when the overlap distribution is simple. Our results

confirm this hypothesis.

Furthermore, we have measured both equilibration times and overlap distributions for

all disorder realizations and correlated these quantities. Finally, we also demonstrate that

the conservative use of the equilibration criterion introduced in Ref. [31] is sufficient to

ensure that nearly all disorder samples are equilibrated.

Our results suggest both a method for improving parallel tempering and a warning when

using it in spin-glass simulations. On the one hand, we find that many disorder realizations

have quite short equilibration times. Thus it might be useful to implement an adaptive

scheme where some disorder realization are simulated for shorter times than other realiza-

tions. State-of-the-art parallel tempering simulations of equilibrium spin glasses require

huge amounts of CPU time because of the difficulty of reaching equilibrium and the need

for a large ensemble of disorder realizations. Thus, such an adaptive scheme has the poten-

tial for large savings in CPU time. On the other hand, the fact that the overlap distribution (a

quantity directly related to the controversy surrounding the low-temperature phase of spin

glasses) is significantly correlated with the dynamics of the algorithm serves as a warning

that one must be extremely careful to ensure that essentially all samples are well equili-

brated in order to avoid systematic errors in measuring disordered-averaged equilibrium

properties.

3.2 Model and Methods

3.2.1 The Edwards-Anderson Ising spin glass

We study the three-dimensional Edwards-Anderson (EA) Ising spin-glass model, de-

fined by the energy function

H = −
∑
〈i,j〉

Jijsisj. (3.1)

The sum is over the nearest neighbors on a simple cubic lattice with periodic boundary

conditions and side length L. The Ising spins si take values ±1 and the interactions Jij
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are quenched random couplings chosen from a Gaussian distribution with zero mean and

variance one.

3.2.2 Simulation parameters

For the parallel tempering algorithm (described in detail in Ch. 2) we use NT = 16

temperatures between T = 0.2 to 2.0 1. This set of temperatures was chosen heuristically

in Refs. [31] and [33] to perform well for L = 6 and 8. The corresponding average ac-

ceptance fractions for replica exchange moves are plotted in Fig. 3.1. It is likely that the

simulations would be more efficient if more replicas were used near and above the critical

region (Tc ≈ 0.96 [30]) where the acceptance fractions are small. However, we believe

that as long as the swapping probability is nonzero, our results will not change qualita-

tively. A bottleneck merely slows down the diffusion process but does not prevent it. For

L = 10, the small acceptance fractions suggest that a larger number of temperatures might

be more efficient. However, our goal is to understand correlations between static and dy-

namic quantities in parallel tempering for a given system size and so we have not sought to

optimize the algorithm for each system size. We believe that the qualitative results obtained

using our parallel tempering parameters would also hold for other reasonable values of the

parameters.

By placing the hottest system temperature at T ≈ 2Tc, we ensure that equilibration

happens quickly, and we use one exchange sweep for each heat bath sweep (N = L3

attempted spin updates). To calculate the spin overlap [Eq. (3.2)] we use two copies of

the system at each temperature, therefore for each sample we simulate two sets of replicas

independently from each other.

As stated before, we employ one replica exchange sweep after one heat bath sweep

[32]. A heat bath sweep corresponds to sequentially attempting to update each spin at each

replica once using the heat bath algorithm as shown in Ch. 2. An exchange sweep corre-

1T ∈ {0.20, 0.27, 0.34, 0.42, 0.50, 0.60, 0.70, 0.82, 0.94, 1.00, 1.20, 1.34, 1.50, 1.66, 1.82, 2.00}
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Figure 3.1. Average acceptance fraction as a function of temperature T for replica ex-
change moves. Note that Tc ≈ 0.96.

sponds to randomly choosing NT − 1 pairs of adjacent replicas and proposing exchanges

for each. Both types of sweeps together make up one parallel tempering sweep. When no

confusion arises we will call this unit of time simply a sweep.

For each system size we simulate approximately 5000 disorder realizations or samples.

The simulations are equilibrated for at least 224 sweeps for L = 6 and 227 sweeps for

L = 8 and 10, then measurements are done for the same number of sweeps, see Table 3.1

for details. A fraction of samples required longer runs to meet the equilibration criteria

discussed in Sec. 3.2.3.2. For samples with very short equilibration times we performed

runs to obtain fine-grained autocorrelation information, see Sec. 3.2.3.2. In total, the data

collection took approximately 140 CPU years on 12-core AMD Opteron 6174 CPUs.
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Table 3.1. For each system size L we equilibrate and then measure for at least 2b Monte
Carlo sweeps. Tmin (Tmax) is the lowest (highest) temperature used, NT is the number of
temperatures, and Nsa is the number of disorder realizations. For some L = 10 samples
longer runs had to be performed to ensure equilibration.

L b Tmin Tmax NT Nsa

6 24 0.2 2.0 16 4961

8 27 0.2 2.0 16 5126
8 28 0.2 2.0 16 4

10 27 0.2 2.0 16 4360
10 28 0.2 2.0 16 353
10 29 0.2 2.0 16 241
10 30 0.2 2.0 16 73

3.2.3 Observables

3.2.3.1 Overlap distributions

The focus of this study is to relate static equilibrium properties of individual spin-glass

samples to the dynamics of the parallel tempering algorithm acting on that sample. The

primary quantity that we measure to study both equilibrium properties and the dynamics of

parallel tempering is the spin overlap q,

q =
1

N

N∑
i=0

sαi s
β
i (3.2)

whereN = L3 is the number of spins and the superscripts α and β indicate two independent

copies of the system with the same disorder. The thermal and disorder average of the

overlap is an order parameter for the system and the probability distribution of the thermally

averaged overlap PJ(q) for a given sample J reveals aspects of the free-energy landscape

for that particular sample. The behavior of PJ(q) for large systems and at low temperatures

is one of the major open questions in the theory of spin glasses. Overlap distributions vary

widely from sample to sample, as can be seen in the three examples shown in Fig. 3.2.

Although there is no direct mapping between the free-energy landscape and PJ(q), it is

clear that numerous peaks in PJ(q) imply numerous minima in the free-energy landscape.
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For example, samples corresponding to Figs. 3.2(b) and 3.2(c) have a more complicated

free-energy landscapes than Fig. 3.2(a). Our central hypothesis is that samples with a more

complicated free-energy landscape tend to have longer dynamic time scales.

From PJ(q) we define IJ(q0) for different q0,

IJ(q0) =

∫ q0

−q0
PJ(q). (3.3)

IJ(q0) is the weight of PJ(q) in an interval near the origin and it serves as an approximate

measure of the complexity of PJ(q). For example, IJ(0.2) ≈ 0 for the samples shown

in Figs. 3.2(a) and 3.2(b), while IJ(0.2) is large for the sample shown in Fig. 3.2(c). We

compute IJ(q0) for eight values of q0 from q0 = 0.2 to 0.9. It is worth noting that IJ(q0)–

especially with q0 = 0.2–has been extensively used in studies of the low-temperature equi-

librium properties of the EA model [31, 3].

3.2.3.2 Characteristic time scales

We measure two time scales for parallel tempering from the autocorrelation function of

the overlap at the lowest temperatures. For an arbitrary observable A, the autocorrelation

function ΓA(t) is defined via

ΓA(t) =
〈A(0)A(t)〉 − 〈A〉2
〈A2〉 − 〈A〉2 . (3.4)

Here, A(t) is the observable measured at time t and 〈· · · 〉 represents a thermal average (To

implement this definition of the autocorrelation function in the simulations, the observable

A is measured at regular intervals and correlated with its value at a time lag t earlier. See,

for example, Ref. [54]). Integrated and exponential autocorrelation times are computed

from the autocorrelation function. The integrated autocorrelation time τAint is the integral of

the autocorrelation function or, for discrete time, the sum of the autocorrelation function,
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τAint =
1

2
+
∞∑
t=1

ΓA(t). (3.5)

The integrated autocorrelation time is the time needed for two subsequent measurements

of A to decorrelate. It is a lower bound on the time needed to reach equilibrium from an

arbitrary initial condition. To calculate τAint care must be taken when truncating the sum in

Eq. (3.5) to avoid large statistical errors (explained below).

Figure 3.3 shows two typical examples of the autocorrelation function for the absolute

value of the spin overlap |q|. For large times, the autocorrelation function is eventually

dominated by noise. The noise floor is indicated in Figs. 3.3 by the horizontal (red) solid

line. Because the noise floor is determined primarily by the number of data points used to

compute the autocorrelation function, it can be chosen to be the same for all simulations

of the same length. Our truncation procedure is to sum the autocorrelation function until it

first hits the noise floor. We obtain the noise floor for each run length by visual inspection of

Γ|q|(t) for many samples. We note that this approach introduces some slight systematic bias

in our estimates of the integrated autocorrelation times. However, the main emphasis of the

study presented in this chapter is to understand the very large sample-to-sample variations

in time scales and, compared to these variations, the errors introduced by our truncation

protocol are small.

We have computed autocorrelation functions for both |q| and q and from these we have

obtained τ
|q|
int and τ qint, respectively. To do this, we first compute a Fourier transform of

the data and then invert the function to obtain the autocorrelation function. This method

is considerably faster than a direct calculation. For L = 6, the simulations are run for

224 sweeps, recording data for the computation of the autocorrelation functions every 10

sweeps. The noise floor for these runs is set to Γ = 0.005. Some samples have τ |q|int values

of order 10 or less. For these, shorter data collection runs of 218 sweeps have been done

starting from an equilibrated spin configuration stored at the end of the longer run. For

these short runs data are collected every sweep to accurately measure the autocorrelation
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function up to time 10 and the full autocorrelation function is patched together from the

short and long runs. The noise floor for these shorter runs is set to Γ = 0.01. If the noise

floor is reached before t = 10, only the autocorrelation function generated by the short

run is used. For both L = 8 and L = 10 the simulations are run for at least 227 sweeps,

recording data every 100 sweeps with shorter runs also needed for samples with small τ |q|int

values. The noise floor used is the same as for L = 6.

The autocorrelation function is always calculated up to a maximum time lag of 1% of

the total run length. Therefore, for some samples and, in particular for L = 10, the noise

floor was not reached by this time and longer runs were necessary to obtain good statistics.

For these L = 10 samples we simulate up to 230 sweeps. 32 samples (approximately 0.6%)

stayed above the noise floor even for the longest runs. To prevent a biasing of the results,

these were not included in the analysis. However, it would be interesting to study these

samples in detail in the future to see why their time scales are this long.

There is another method for truncating the sum in Eq. (3.5) introduced by Madras and

Sokal [39] where the upper limit of the sum is determined recursively. An initial upper

limit is chosen and τAint is computed for that value, the new upper limit is determined as

some factor (6 is suggested in Ref. [39]) times the current τAint. The estimated value of

τAint is obtained when this process has converged. We experimented with this approach but

did not find that it converged in a consistent way across all samples with very different

autocorrelation functions. However, we note that our approach should have systematic

errors no larger than those resulting from the method of Madras and Sokal with the upper

limit set to 6τ
|q|
int because the noise floor is not reached until at least 10τ

|q|
int except for the

very few samples with extremely small τ |q|int values.

The second time scale that we consider is the exponential autocorrelation time τAexp,

defined by the asymptotic exponential decay of the autocorrelation function,

ΓA(t) ∼ Ae−t/τ
A
exp . (3.6)
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Except for observables orthogonal to the slowest mode of the Markov chain, τAexp is the

characteristic time of the slowest mode and is thus the exponential time scale to reach

equilibrium from an arbitrary initial state [65].

In principle, τAexp is the most important time scale for studying disordered systems be-

cause the main difficulty is reaching thermal equilibrium (controlled by τAexp) rather than

collecting enough uncorrelated data at equilibrium (controlled by τAint). Unfortunately, cal-

culating τAexp for a large number of samples is difficult because it requires an automatized

fitting process. For some samples, such as the one shown in Fig. 3.3(a), the autocorrela-

tion function decays nearly exponentially over most of the observable time range, allowing

for a precise fitting and extraction of τ |q|int. However, for many samples the autocorrelation

function is not exponential for the measured times, as can be seen in Fig. 3.3(b) and, for

these samples, an automatic fitting procedure would not be reliable. For that reason, the

time scale that we correlate with the static properties of the EA spin glass is the integrated

autocorrelation time. We have studied τ |q|exp by hand for a small subset of the data set and

find that for those samples where a reasonable fit is possible, τ |q|exp is in the range of 1 to 15

times τ |q|int. Most, but not all, samples share the behavior seen in the examples in Figs. 3.3

that there is an initial sharp decline before the (approximately) exponential decay sets in.

This sharp decline explains why τ |q|exp is typically larger than τ |q|int.

Finally, we also measured the round-trip time τRT for each sample, defined as the av-

erage time after equilibration is achieved, for a replica to diffuse from the lowest to the

highest temperature and then back to the lowest temperature again [32].

3.3 Results

Figure 3.4 shows the probability distribution for τ |q|int for L = 8. In agreement with

previous studies [1, 30, 2], the figure reveals that the equilibration times for spin glasses

are very broadly distributed. The distributions for L = 6 and 10 are similar although with

different means and standard deviations, as shown in Tables 3.2 and 3.3, respectively. Ta-
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Table 3.2. Mean values of the logarithms of τ qint, τ
|q|
int and τRT for system sizes L = 6 – 10.

L 6 8 10
log10(τ

q
int) 1.7164(58) 2.8366(75) 3.8711(84)

log10(τ
|q|
int) 1.6035(90) 2.8065(94) 3.8881(97)

log10(τRT) 3.6217(28) 4.4571(34) 5.2421(42)

Table 3.3. Standard deviations of the logarithms of τ qint, τ
|q|
int and τRT for system sizes L = 6

– 10.

L 6 8 10
log10(τ

q
int) 0.408 0.534 0.592

log10(τ
|q|
int) 0.631 0.672 0.685

log10(τRT) 0.194 0.242 0.293

bles 3.2 and 3.3 also show the mean and standard deviation of τ qint. The values for τ qint are

similar to those for τ |q|int, as can be seen more clearly in Fig. 3.5, however the standard devi-

ations are somewhat smaller. The mean time scales increase with system size, as expected,

and the round trip time τRT is, on average, longer than the integrated autocorelation times.

Figure 3.6 shows a scatter plot with each point representing one sample for L = 8. The

x and y coordinates are determined by τ qint and τ |q|int, respectively. The data illustrate that

τ qint and τ |q|int are strongly correlated, especially for those samples with the longest integrated

autocorrelation times. The observation that τ |q|int can take smaller values than τ qint is presum-

ably a consequence of the fact that the decorrelation of q requires global spin flips while

the decorrelation of |q| does not.

Figures 3.7(a) and 3.7(b) show scatter plots of τ |q|int vs IJ(q0) for L = 8 and q0 = 0.2

and q0 = 0.8, respectively. Each point represents one sample. These figures show that

τ
|q|
int is correlated with IJ(q0) and the correlation is stronger for larger values of q0. It is

also striking that large values of IJ(q0) are never associated with very small integrated

autocorrelation times (similar results are obtained for the other system sizes studied). This
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suggest that when the free-energy landscape is complex, time-scales are large, as one would

naively expect.

To quantify the correlations between τ |q|int and IJ(q0), we use the Pearson correlation

coefficient r [61], whose estimator for a finite data set {(xi, yi)} is

r =

M∑
i=0

(xi − x̄)(yi − ȳ)√√√√ M∑
i=0

(xi − x̄)2
M∑
i=0

(yi − ȳ)2

, (3.7)

where M is the size of the data set and the overbar indicates the average over the data

set. If r = 1 there is an exact linear relationship between x and y while a small value

of r indicates the absence of any linear dependence. Pearson r values for log10(τ
|q|
int) vs

log10[IJ(q0)] for our data are shown in Table 3.4 and Fig. 3.8 for the system sizes studied

and different values of q0. These results clearly demonstrate that longer parallel tempering

time scales are correlated with more complicated overlap distributions. The strength of the

correlation is slightly weaker for larger systems. The fact that r increases with q0 suggests

that the presence of additional peaks in PJ(q) increases τ |q|int independent of whether those

peaks are near the origin or not. Here it is worth mentioning that to observe correlations,

q0 needs to be chosen small enough to exclude the two outer peaks at ±qEA, since those

peaks are always present and not indicative of the complexity of the overlap distribution.

Consequently, including them will only increase IJ(q0) but not the equilibration time, as

can be seen by the decreasing r value for q0 > 0.8 in Fig. 3.8.

On the other hand, we find that the round trip time is not correlated with τ |q|int or, by

extension, IJ(q0). Figure 3.9 is a scatter plot of τRT vs τ |q|int for L = 8 (compare with

Fig. 3.6). Each point represents one sample and the diagonal line is τRT = τ
|q|
int. It is clear

from this figure that τRT has a much smaller variance than τ
|q|
int and that the correlation

between the two is minimal. The last row of Table 3.4 shows the Pearson r value between

log10(τRT) and log10(τ
|q|
int) and quantifies the lack of correlation between τRT and τ |q|int. Note
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Figure 3.7. Scatter plot for all L = 8 samples of τ |q|int vs IJ(q0) for (a) q0 = 0.2 and
(b) q0 = 0.8. The empty area underneath the scatter for large IJ(q0) clearly shows that
realizations with large values of IJ(q0) can never have small values of τ |q|int.
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Figure 3.8. Pearson correlation r between log10[IJ(q0)] and log10(τ
|q|
int) vs q0. The data

suggest that longer parallel tempering time scales are correlated with more complicated
overlap distributions.

that the authors of Ref. [3] consider a time scale related to the motion of replicas in parallel

tempering and also find no correlation with IJ(q0).

If the highest temperature is chosen such that its mixing time is one heat bath sweep,

then τRT ≥ τ
|q|
int because there will be no memory of the spin state of the replica between

successive visits to the lowest temperature, as can be seen in Tables 3.2 and 3.3, as well

as Fig. 3.9. Figure 3.9 shows that τRT is much larger than τ
|q|
int for most samples. One

explanation for this is that (for most samples) the spin state of the coldest replica can be

decorrelated by diffusion from the lowest temperature to an intermediate temperature and

back; full round trips are not needed for decorrelation.
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Figure 3.9. Scatter plot of the average round trip time τRT vs τ |q|int for L = 8. The diagonal
(red) line is τRT = τ

|q|
int. The data show almost no correlation between these quantities.
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Table 3.4. Pearson correlation r between the overlap weight log10[IJ(q0)] for various q0 and
the logarithm of the integrated autocorrelation time for the overlap log10(τ

|q|
int) for the three

system sizes, L. The bottom row shows the correlation coefficient between the logarithm
of the round trip time log10(τRT) and log10(τ

|q|
int).

q0 L = 6 L = 8 L = 10
0.2 0.5299(94) 0.5355(95) 0.4889(95)
0.3 0.5634(86) 0.5693(79) 0.5264(93)
0.4 0.5982(80) 0.5983(75) 0.5590(91)
0.5 0.6286(77) 0.6217(73) 0.5920(80)
0.6 0.6671(72) 0.6494(70) 0.6272(72)
0.7 0.7062(63) 0.6788(66) 0.6535(65)
0.8 0.7385(46) 0.6975(63) 0.6752(57)
0.9 0.7397(58) 0.6583(85) 0.6410(83)
log10(τRT) 0.014(19) 0.114(17) 0.126(20)

Note that if we repeat the study for τ qint instead of τ |q|int, the correlation values would

show the same qualitative trend as for τ |q|int, but they would on average be slightly smaller.

Finally, we also test equilibration with the method introduced by Katzgraber et al. in

Ref. [31] for short-range spin glasses with Gaussian disorder between the spins. In this

method, the average energy per spin

u = − 1

N

∑
〈i,j〉

[ Jij〈sisj〉 ]av, (3.8)

where [· · · ]av represents a disorder average and, as before, 〈· · · 〉 denotes the Monte Carlo

average for a given set of bonds, can be related to the link overlap

ql =
1

Nb

∑
〈i,j〉

sαi s
α
j s

β
i s

β
j (3.9)

via an integration by parts over the interactions Jij between the spins. In Eq. (3.9)Nb = dN

with d = 3 the space dimension represents the number of bonds in the system. One obtains:

[〈ql〉]av = 1− T |u|
d
, (3.10)
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where T is the temperature.

Figure 3.10 shows representative results for L = 8 and T = 0.2, the lowest temperature

simulated. At approximately 105 Monte Carlo sweeps both data computed directly from

the energy per spin (blue squares) and data computed from the link overlap (red circles)

agree within error bars. Note that 99% of the τ |q|int values for this system size are smaller

than the point marked with the solid vertical green line. Thus, for the simulated time of over

108 Monte Carlos sweeps, the data are well equilibrated. This suggests that a conservative

use of the equilibration criterion developed in Ref. [31] will guarantee that almost all of the

samples are equilibrated.

3.4 Conclusions

We have found one factor that explains the broad distribution of time scales in parallel

tempering for spin glasses: The roughness of the free-energy landscape of each individual

sample directly affects its equilibration time scales. In accordance with previous observa-

tions on the parallel tempering method [38], if there are many minima in the free-energy

landscape, a sample requires more time to equilibrate. The equilibrium distribution of the

spin overlap serves as proxy for the complexity of the free-energy landscape. Our results

show that individual samples need to be tested individually to ensure proper equilibration,

as previously suggested in Ref. [2]. However, we show that the equilibration test devel-

oped in Ref. [31] is a viable alternative for system sizes currently accessible in simulations

if applied conservatively. Furthermore, the parallel tempering round-trip times seem to be

unaffected by the complexity of the free-energy landscape and should therefore not be used

as a measure of how well a system is equilibrated.

The clear correlations between algorithmic (nonequilibrium) time scales and the equi-

librium complexity of the free-energy landscape opens the door for alternate studies of the

nature of the spin-glass state, a problem that we consider in the following chapters.
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Figure 3.10. Average link overlap [〈ql〉]av (red circles) and 1−T |u|/d (see Eq. (3.10), blue
squares) as a function of time t for L = 8 and T = 0.20. For t & 105 sweeps both data sets
agree suggesting that the system is in thermal equilibrium. The vertical (green) line in the
figure represents the time for which 99% of the samples have values of τ |q|int less than this
time. Error bars are smaller than the symbols.
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CHAPTER 4

EQUILIBRIUM PROPERTIES

4.1 Introduction

Spin glasses [10] have been the subject of intense study and considerable controversy

for decades. These models are perhaps the simplest, physically-motivated examples of

frustrated systems in classical statistical mechanics. Given their wide applicability across

disciplines, it is important that their behavior is understood. Despite four decades of re-

search, the low-temperature phase of short-range spin glasses is hotly debated and poorly

understood. Here we study both the three-dimensional (3D) Edwards-Anderson (EA) Ising

spin glass [17] and the Ising spin glass on a complete graph—known as the Sherrington-

Kirkpatrick (SK) model [63]—in an effort to gain a deeper understanding of the low-

temperature spin-glass state, as well as the applicability of different theoretical pictures.

Our results suggest that these models are qualitatively different at low temperatures.

Parisi’s solution of the SK model [56, 59] involves an unusual form of symmetry break-

ing among replicas. These were originally introduced as a tool to carry out the disorder

average of the logarithm of the partition function. The low-temperature phase of the model

within the replica symmetry breaking (RSB) solution [56, 59] has several unusual features

such as the breakdown of self-averaging and the co-existence of a countable infinity of pure

states in the thermodynamic limit.

There is no analytic theory for the EA model but it is now well-accepted on the basis

of numerical simulations [35] that the EA model undergoes a continuous phase transition.

However, the low-temperature broken-symmetry phase is not understood, even qualita-

tively. Different mutually-exclusive scenarios have been proposed: The replica symmetry
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Figure 4.1. (a) In the droplet (and chaotic pairs picture for fixed volume) P (q) is trivial
(two δ functions at ±qEA, i.e., one pair of pure states). (b) In the RSB picture individual
samples have many pairs of pure states (many δ functions in PJ (q)). (c) In the RSB picture
P (q) is nontrivial (continuous support for |q| < qEA).
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breaking (RSB) picture is based on an analogy with the solution of the SK model. It

assumes that self-averaging breaks down and that there are a countable infinity of pure

states in the thermodynamic limit. A qualitatively different and simpler picture was pro-

posed to describe the EA model by McMillan, Fisher and Huse, as well as Bray and Moore

[42, 19, 20, 21, 12]. In the “droplet scaling” picture, the low-temperature phase is described

by one pair of pure states related by a spin flip with low-lying excitations that are isolated,

compact droplets of the opposite phase. In the droplet picture the low-temperature phase

of the EA model is qualitatively similar to the Ising ferromagnet where there are also two

phases related by a global spin flip and where low-lying excitations are compact regions

of the minority phase. A central difference between RSB and the droplet picture for the

EA model is whether there is a single pair of pure states or a large number of pairs of pure

states for large systems, see Fig. 4.1.

Newman and Stein [49, 50, 51] explained that the usual way of constructing the ther-

modynamic limit cannot be applied to finite-dimensional spin glasses because of the pos-

sibility of a chaotic system-size dependence in which different thermodynamic states may

appear for different system sizes. They showed that for translationally-invariant lattices

and disorder that is statistically translationally invariant, the key ideas of RSB—non-self-

averaging and a countable infinity of pure states—cannot hold within the naı̈ve way that

they were first proposed. However, their results do not completely rule out a nonstandard

interpretation of RSB with an uncountable infinity of pure states but in every fixed volume,

only a countable infinity of these states appearing. They also proposed a more plausible

many-states picture, known as the “chaotic pairs” picture, in which for a fixed choice of

couplings, there are uncountably many pure states but that in a single finite volume only

one pair is manifest.

In this chapter we report the results of large-scale Monte Carlo simulations of both the

SK and EA models. Our objective is to shed light on the qualitative nature of the low-

temperature phase of the EA model by comparing and contrasting to the SK model using
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comparable system sizes. Previous numerical studies, e.g., [34] using the average spin

overlap distribution suggested that both the SK and EA models are well described by the

RSB picture, see Fig. 4.1. However, for the numerically-accessible system sizes the two

main peaks are still converging to ±qEA (see Figs. 4.1 and 4.4) and therefore results might

be plagued by finite-size effects. On the other hand, studies of the average link overlap [34]

distribution suggest agreement with the droplet picture. The “trivial nontrivial” scenario

[55, 37, 34] reconciles these numerical results by postulating that excitations are compact,

as in the droplet picture, but their energy cost is independent of system size, as in the RSB

picture. In an effort to resolve these discrepancies, in this work we introduce a statistic

obtained from the spin overlap distribution that detects sharp peaks in individual samples,

inspired by a recent study on the SK model [5]. This statistic clearly differentiates the RSB

and droplet pictures: it converges to zero in the large-volume limit if there is a single pair

of pure states and to unity if there are countably many. Our results for this quantity shows

clear differences between the EA and SK models.

4.2 Models and Numerical Details

The SK and EA models are defined by the Hamiltonian

H = −
N∑

i,j=1

Jijsisj, (4.1)

with si ∈ {±1} Ising spins. For the EA model (Fig. 4.2(a)), the sum is over nearest

neighbors on a cubic lattice of size N = L3 with periodic boundaries. The couplings Jij

are chosen from a Gaussian distribution with zero mean and standard deviation unity. A

set of couplings J = {Jij} defines a disorder realization or, simply, a “sample.” For the

SK model (Fig. 4.2(b)), the sum is over all pairs of spins and the Jij are chosen from a

Gaussian distribution with zero mean and standard deviation 1/
√
N − 1.
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Figure 4.2. (a) Cubic lattice for the EA model for a system of size L = 2 with N = 8
spins. (b) Complete graph for the SK model with N = 8 spins. In both cases, the Ising
spins are located at the corners marked by the blue dots and the edges/lines correspond to
couplings.
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Ordering in spin glasses is detected by measuring the spin overlap

q =
1

N

∑
i

sαi s
β
i , (4.2)

where “α” and “β” indicate two independent spin configurations for the same sample J .

The primary observable we consider for fixed disorder J and system size N is the overlap

probability density, PJ (q). In the high-temperature phase there is a well-defined thermody-

namic limit and PJ (q)→ δ(q) for N →∞ for almost every J . The behavior of PJ (q) for

large N and T < Tc, Tc the critical temperature, distinguishes the RSB picture from other

theories. If there is only a single pair of states for each system size, PJ (q) consists for large

N of a symmetric pair of δ functions at the Edwards-Anderson order parameter q = ±qEA,

see Fig. 4.1(a). In the RSB picture there are many sharp peaks symmetrically distributed in

the range−qEA < q < qEA as shown in Fig. 4.1(b), corresponding to multiple pairs of pure

states. In the RSB picture, the distribution of peaks depends on J but the disorder average

of the overlap distribution P (q) exists, and for large N is expected take the form shown in

Fig. 4.1(c).

We have carried out parallel tempering Monte Carlo [25] simulations of both models.

Parameters are shown in Tables 4.1 and 4.2. For each sample we equilibrate two indepen-

dent sets of replicas to compute the overlap distribution. Equilibration in the EA model is

tested with the method introduced in Ref. [34], in accordance with our findings explained

in the previous chapter. For the SK model we use the approach from Ref. [26]. The num-

ber of equilibration and data collection sweeps are chosen to be long enough to ensure that

samples are well equilibrated and that PJ (q) is accurately measured for each sample. We

report results for T = 0.42 [T = 0.4231] for the EA [SK] model. For the EA model,

Tc ≈ 0.96 [35], while for the SK model Tc = 1, such that for both models our simula-

tions are at ∼ 0.4Tc, i.e., deep within the spin-glass phase where critical fluctuations are

unimportant. It is worth noting here that tests at low T give qualitatively similar results.
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Table 4.1. Simulation parameters for the EA spin glass. For each number of spins N = L3

we equilibrate and measure for 2b Monte Carlo sweeps. Tmin [Tmax] is the lowest [highest]
temperature used and NT is the number of temperatures. Nsa is the number of disorder
samples. For T ≥ 0.42 all system sizes are in thermal equilibrium.

N L b Tmin Tmax NT Nsa

64 4 18 0.2000 2.0000 16 4891
216 6 24 0.2000 2.0000 16 4961
512 8 27 0.2000 2.0000 16 5130

1000 10 27 0.2000 2.0000 16 5027
1728 12 25 0.4200 1.8000 26 3257

Table 4.2. Simulation parameters for the SK spin glass. For details see the caption of Table
4.1. For T ≥ 0.4231 all data are equilibrated.

N b Tmin Tmax NT Nsa

64 22 0.2000 1.5000 48 5068
128 22 0.2000 1.5000 48 5302
256 22 0.2000 1.5000 48 5085
512 18 0.2000 1.5000 48 4989

1024 18 0.2000 1.5000 48 3054
2048 16 0.4231 1.5000 34 3020

4.3 Results

Figure 4.3 shows PJ (q) for three different EA samples (N = 512 = 83, T = 0.42).

It is noteworthy that PJ (q) varies considerably between samples. Qualitatively similar

overlap distributions are seen for the SK model. Figure 4.4, left panel [right panel], shows

the disorder averaged overlap distribution P (q) for the EA [SK] model for different system

sizes at T = 0.42 [T = 0.4231]. Because P (q) is an even function, we show one side of

P (q) for each model. At this low temperature, P (q) consists of large peaks at the finite-size

value of the EA order parameter, ±qEA(N). P (q) is reasonably flat, non-zero, and nearly

independent of N in the approximate range −0.4 . q . 0.4 for the sizes studied here. We

can quantify this observation by considering the integrated overlap,

I(q0) =

∫
|q|<q0

P (q)dq. (4.3)

Figure 4.5 shows I(0.2) as a function of N for both the EA and SK models at T ≈ 0.4Tc

(Tests at low T give qualitatively similar results). It is noteworthy that I(0.2) is nearly

independent of N . We found qualitatively similar results for other values of q0 up to q0 ≈
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0.5 and temperatures down to 0.2Tc for smaller systems. The constancy of I(0.2) has been

observed in a number of studies (see, for example, Refs. [34] and [3]) and is among the

strongest evidence in favor of the validity of the RSB picture for short-range systems.

Although I(q0) in Fig. 4.5 is nearly constant over the range of sizes simulated in this

and other studies of the EA model, it is also clear that, for these same sizes there are

strong finite-size effects. These corrections can be seen, for example, by looking at the size

dependence of qEA(N), the location of the main peak in P (q) for different system sizes

N . The peak moves to smaller values of qEA as N increases, similar to recent results [3]

for larger N . The presence of these strong finite-size corrections makes the absence of any

significant N dependence of P (q) for small q somewhat surprising. In the droplet picture,

I(q0) is expected to decay with a small power of L, I(q0) ∼ TL−θ (θ ≈ 0.2 in 3D [24])

and this slow asymptotic behavior may not set in until large sizes where the droplet energy

is larger than the temperature are reached. Thus the behavior of I(q0) shown in Fig. 4.5

may not be a sensitive indicator of the nature of the low-temperature phase for system sizes

currently accessible to simulation.

To better understand the size dependence of the overlap distributions, we must go be-

yond disorder averages and consider other statistics obtained from PJ (q). In particular, we

want to identify the emergence, or not, of δ functions in the range −qEA < q < qEA as N

increases, which would signal more than one pair of pure states. A finite-size broadened δ

function at q is characterized by a large value of PJ (q). To detect a δ-function-like behavior

for finite N we consider the statistic

∆(q0, κ) = Prob

[
max
|q|<q0

{
1

2

(
PJ (q) + PJ (−q)

)}
> κ

]
. (4.4)

The probability is defined with respect to the distribution of couplings, so that ∆(q0, κ) is

the fraction of samples with at least one peak greater than κ in PJ (q) in the range |q| < q0.

Since PJ (q) is an even function, we average over q and −q to reduce statistical errors. κ

is chosen to be large enough to exclude some but not all samples. We refer to samples
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Figure 4.3. Typical overlap distributions PJ (q) for three disorder realizations for the EA
model with N = 83 and T = 0.42. PJ (q) varies considerably between samples, and for a
choice of κ = 1, only the sample with the central peaks (c) is peaked for q0 & 0.1, whereas
the two other samples (a) and (b) are not for q0 . 0.5.
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Figure 4.4. Disorder-averaged overlap probability distribution P (q) for different system
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tively. Strong finite-size effects are present, which can be noted by looking at the height
and the location of the main peaks for different system sizes. As the system size increases,
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Figure 4.5. Disorder average of the weight of the overlap distribution I(0.2) as a function
of N for T ≈ 0.4Tc for both the EA and SK models. The data are nearly independent of
N .
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counted in ∆(q0, κ) as “peaked.” For example, with κ = 1 the sample with the central

peaks (c) in Fig. 4.3 is peaked for q0 & 0.1, whereas the two other samples (a) and (b) are

not for q0 . 0.5.

The droplet and chaotic pairs pictures make dramatically different predictions from the

RSB picture for ∆(q0, κ). For the droplet or chaotic pairs picture there is only a single pair

of states for any large volume so that ∆(q0, κ)→ 0 for any κ > 0 and any q0 < qEA when

N →∞. However, for the RSB picture one expects δ functions in PJ (q) for any range of

q, i.e., ∆(q0, κ)→ 1 as N →∞ for any q0 and κ > 0.

Figure 4.6 shows ∆(q0, κ) as a function of system size for q0 = 0.2 and 0.4, as well

as κ = 1. The error bars there are one standard deviation statistical errors due to the finite

number of samples. There are also errors due to the finite length of the data collection.

To estimate these errors we measured ∆+(q0, κ) and ∆−(q0, κ), defined as in Eq. (4.4)

but from the q > 0 and q < 0 components of PJ (q), respectively. These are expected

to be reasonably independent and their differences provide an estimate of the error due to

finite run lengths. For all sizes, the average absolute difference between these quantities,

(|∆+(q0, κ)−∆(q0, κ)|+ |∆−(q0, κ)−∆(q0, κ)|)/2 is less than the statistical error.

We found qualitatively similar results for other values of q0 and κ, as well as for

lower temperatures. Our most important observation is that the fraction of peaked sam-

ples ∆(q0, κ) is nearly constant and small for the EA model while ∆(q0, κ) is increasing

over the same range of N for the SK model. Similar results for the SK model were ob-

tained in Ref. [5] by counting individual peaks. The result for the SK model is expected

from Parisi’s RSB solution. The contrasting result for the EA model suggests that the num-

ber of pure states does not grow with the system size for low T ; a result consistent with the

droplet and chaotic pairs pictures.

The difference in the behavior of ∆ for the SK model in comparison to the EA model

might be explained by the fact—visible in Fig. 4.4 and discussed more quantitatively in

Ref. [18]—that peaks sharpen more quickly with N for the SK than for the EA model. To
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Figure 4.6. Fraction of peaked samples ∆(q0, κ) at T ≈ 0.4Tc as a function of N for
κ = 1, q0 = 0.2 and 0.4. While data for the EA model are nearly constant as a function
of N (consistent with the droplet/chaotic pairs pictures) the data for the SK model increase
with N , in agreement with the RSB picture.
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Figure 4.7. Contours of constant ∆ for the EA model (left) and the SK model (right)
as a function of log10(N) and log10(κ/κ0) with κ0 = 0.5 and 1.5 for q0 = 0.2 and 1.0,
respectively. The solid [dashed] lines are contours of constant ∆ for q0 = 0.2 [q0 = 1.0].
The contours are equally spaced in ∆.

study the role of this effect, we compare ∆ for the two values, q0 = 0.2 and q0 = 1, for each

model separately. For q0 = 1, ∆ is controlled by the peaks at ±qEA and must converge to

unity for both models because for N → ∞ the qEA peaks become δ functions. Figure 4.7,

left [right] panel, shows contour plots of constant ∆ for the EA [SK] model. The horizontal

axis is the logarithm of the number of spins and the vertical axis is the logarithm of κ/κ0

with κ0 = 0.5 for q0 = 0.2 and κ0 = 1.5 for q0 = 1. The curves are lines of constant ∆

obtained from a linear interpolation of the data. Each set of curves are equally spaced in ∆

with ∆ decreasing as κ increases. For the EA model the ranges are (0.2, 0.8) for q0 = 1

and (0.02, 0.14) for q0 = 0.2. For the SK model the ranges are (0.05, 0.77) for q0 = 1 and

(0.06, 0.288) for q0 = 0.2. The dashed contours are for q0 = 1 and thus include the qEA

peaks. As expected, the dashed contours are clearly increasing functions for both models

although they rise more rapidly for the SK model than for the EA model. The solid curves

are contours of constant ∆ for q0 = 0.2. Close inspection of the data reveals a qualitative

55



difference between both models. For large N and large ∆, the SK q0 = 0.2 contours rise

more steeply than the corresponding q0 = 1 contours, suggesting that not only are peaks

sharpening, but the number of peaks is also increasing. In fact, Ref. [5] shows that the

number of peaks in PJ(q) should scale as N1/6 for the SK model. On the other hand, for

large N and large ∆, the EA contours for q0 = 0.2 are nearly flat, rising less steeply than

for q0 = 1, suggesting that the number of peaks is either decreasing or staying constant.

To further illustrate how various choices of κ would affect information gained from the

quantity ∆(q0, κ), let us consider two additional cases with both smaller (κ = 0.5) and

larger (κ = 2.5) values. We mentioned that κ has to be chosen large enough to exclude

some but not all samples. This is actually a very large window, since one would have to

look at extremely small κ values to get nearly all of the samples to have at least one peak

in the range of −q0 < q < q0 that is higher than κ. This shows the robustness of our

conclusions with regards to ∆(q0, κ), as can be seen in Fig. 4.8. There we have κ = 0.5,

but we can still observe the qualitative difference between the EA and the SK models,

especially for large system sizes. The only difference is that, for both models, for small

system sizes only little change in behavior can be observed with increasing system size,

thus making it harder to reach clear conclusions. Hence, using a larger κ illustrates our

point more clearly. The next figure, Fig. 4.9, points to the opposite case, where κ is too

large. Here, only the outer-most peaks located at qEA would be high enough to exceed κ for

most of our samples. But the q0 values we are considering here are much smaller than qEA,

therefore, especially for smaller systems sizes, we get insignificantly small values. This

is, in itself not necessarily misleading, but makes any observation about the behavior of

the models difficult to interpret. In conclusion, observations made by looking at ∆(q0, κ)

are quite robust without any significant dependence on the value of κ, and the main reason

we selected κ = 1 is to be able to make the most from our whole data set, including the

smallest system sizes.
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Figure 4.8. Fraction of peaked samples ∆(q0, κ) at T ≈ 0.4Tc as a function of N for
κ = 0.5, q0 = 0.2 and 0.4. For such a low value of κ, ∆(q0, κ) is at first not significantly
affected by the increasing system size, only for larger system sizes we start to see the
qualitative difference between the two models.
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Figure 4.9. Fraction of peaked samples ∆(q0, κ) at T ≈ 0.4Tc as a function of N for
κ = 2.5, q0 = 0.2 and 0.4. For such a high value of κ, very few samples have at least one
peak higher than κ in the ±q0 range, thus, for most of the systems, ∆(q0, κ) is too small to
make any meaningful observations.
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4.4 Conclusions

In this chapter we introduced a statistic ∆ that detects the fraction of samples with δ

function behavior in PJ (q) near the origin and sharply distinguishes the RSB picture from

scenarios with only a single pair of states such as the droplet picture. While our results

for the SK model are consistent with RSB, as expected, the EA model does not display a

trend towards many pairs of pure states. These results lend weight to the droplet picture,

the chaotic pairs picture and other scenarios with only a single pair of pure states in any

large volume. It is also possible that for the EA model, ∆ increases very slowly in N and

ultimately converges to unity in agreement with the RSB picture. However, our data show

no indication of such trend. Therefore, it would be interesting to perform a similar analysis

with extremely large data sets computed with special-purpose computers, such as the Janus

machine [6].

4.5 A scaling theory

Shortly after the paper [73] on which this chapter is based was published, Billoire et al.

published a comment [9] with an interesting theory, based on RSB, to explain our 3D EA

data. We responded [72], and the following is a summary of the exchange.

Their theory attributes the plateau in ∆ for our EA data to a combination of a small

value of I(q0) and a small value of the exponent describing the growth of P (qEA) as a

function of L. It predicts that ∆ for the EA model will grow from its small values at

L = 12 to unity extremely slowly in L. But our Fig. 4.7 shows that, even after factoring

out the slower growth in P (qEA) for the EA model relative to the SK model, we still find a

qualitative difference between the EA and SK models. The scaling theory in their comment

asserts that

∆(q0, κ) ∼ [P (qEA)/κ]I(q0). (4.5)

This can be simplified in the regime that it is applicable, i.e., when I(q0) is small. Noting

that I(q0) ≈ q0P (0) one obtains
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Figure 4.10. ∆(q0, κ) vs T for L = 10 and 12 (EA model). q0 and κ are chosen such that
I(q0) ≈ 0.067 and P (qEA)/κ = 3.

∆(q0, κ) ≈ q0P (0) log[P (qEA)/κ]. (4.6)

The predicted linear dependence of ∆ on q0 is consistent with our data and is to be expected

if the peaks in PJ(q) are distributed roughly uniformly in q for q < qEA. To test the

validity of the scaling theory of Ref. [9], we compared our data for the EA model at several

temperatures holding the scaling quantities (P (qEA)/κ) and I(q0) fixed across all T . The

theory predicts that if these scaling variables are held fixed, then ∆ should remain constant.

Figure 4.10 shows ∆(q0, κ) for a range of temperatures and our two largest sizes L = 10

and L = 12 (except for T = 0.2 where we do not have data for L = 12). For each T and L,

both q0 and κ are adjusted so that I(q0) ≈ 0.067 and P (qEA)/κ = 3, which requires that

q0 ranges from 0.16 to 0.56 and κ from 0.5 to 2.6 as T decreases from 0.7 to 0.2. It is clear
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from Fig. 4.10 that ∆ is not constant as predicted by the theory in Ref. [9]. Therefore, the

theory presented in their comment does not explain our EA data.
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CHAPTER 5

THE 4D EA MODEL AND ADDITIONAL OBSERVATIONS

5.1 Introduction

In this chapter we expand on some of our findings in the previous chapter. First we

consider the 4D Edwards-Anderson (EA) model [8, 62, 14, 60], in addition to the 3D EA

and the Sherrington-Kirkpatrick (SK) models we looked at before, to have a more complete

understanding of the Ising spin-glass in general. We then present supplementary measure-

ments that were inspired by recent papers on the topic [45, 46], further investigating the low

temperature behavior of all of our models. We finish up with two sections of preliminary

results which seem promising to motivate further investigation. The first of those is to con-

sider smaller windows inside larger systems [49, 44, 41], and how the observables change

depending on the size of the window or the system simulated. The second is a quick look

at the effects of boundary conditions (BC) [27], and there we explain what observations

can be made by considering not only the fully periodic BC, but also antiperiodic ones in

several, or all directions.

5.2 The 4D EA Model

In this section we consider an additional model, the 4D EA model [8, 62, 14, 60],

to see whether the observations we made in the previous chapter is generic to the low

temperature phase of short-range spin glasses, or is specific to three dimensions. There is a

consideration about an upper critical dimension Du, beyond which corrections to the mean

field approach would be insignificant (Du ≥ 6) [68]. By considering D = 4 we are staying

below that limit, as well.
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Table 5.1. Simulation parameters for the 4D EA spin glass. For each number of spins
N = L4 we equilibrate and measure for 2b Monte Carlo sweeps. Tmin [Tmax] is the lowest
[highest] temperature used and NT is the number of temperatures. Nsa is the number of
disorder samples.

N L b Tmin Tmax NT Nsa

256 4 23 0.7200 2.3800 52 3252
625 5 23 0.9101 2.3800 42 4086

1296 6 23 0.7200 2.3800 52 3282
2401 7 23 0.9101 2.3800 42 4274
4096 8 23 0.7200 2.3800 52 3074
6561 9 24 0.7200 2.3800 52 3010

The EA model, as explained in the previous chapter, is defined by the Hamiltonian

H = −
N∑
〈i,j〉

Jijsisj, (5.1)

with si ∈ {±1} Ising spins. For the 4D version, the sum is over nearest neighbors on

an hypercubic lattice of size N = L4 with periodic boundaries. The couplings Jij are

again chosen from a Gaussian distribution with zero mean and standard deviation unity.

The parameters of the replica exchange Monte Carlo simulations are given in Table 5.1.

We are reporting results for T = 0.9101, which corresponds to T ≈ 0.5Tc for this model

(Tc = 1.78 [60]) . This allows us to compare with the previously investigated models, since

at this temperature our system is deep within the spin-glass phase. Additionally, we use the

SK model data at a similar reduced temperature for our one-to-one comparisons, and we

added one more system size, N = 3072, to the SK model data as well.

The largest system size we have simulated for this model is L = 9. We believe it is

important to start by questioning the equilibration of these simulations, since we are now

dealing with much larger systems compared to the previous ones we simulated. Figure

5.1 shows representative results for the method introduced in [31] and used in Section 3.3.

Here, we can see that at the end of simulation of 224 time steps, the model can be considered

well equilibrated, since at least the last four of the measurements fully overlap. However,

we closely examined the time-evolution of the link overlap ql and the overlap square q2

values for individual samples, and discovered cases where those values are not converging
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Figure 5.1. Average link overlap [〈ql〉]av (red circles) and 1−T |u|/d (blue squares), where
u is the energy (see Eq. (3.10)), as a function of time t for L = 9 and T = 0.9101. Error
bars are smaller than the symbols.

fast enough. Hence, we heed our own results from Ch. 3 and take a more conservative

approach by discounting any conclusions made solely based on the largest system sizes.

As we will see, some of the L = 9 of the 4D EA model and N = 3072 of the SK model

results do seem anomalous.

The first step towards understanding this model is to look at the disorder-averaged over-

lap probability distribution P (q) for all simulated system sizes. In Fig. 5.2 we see that

significant finite size effects are present, as can be noted from the change in positions of the

qEA peaks with L. The distributions seem to be overlapping in the middle section, around

q = 0 with the possible exception of the largest system L = 9, which is lower. This effect
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Figure 5.2. Disorder-averaged overlap probability distribution P (q) for different system
sizes at T = 0.9101 for the 4D EA model.

can be better observed in Fig. 5.3, where we plotted I(0.2), the disorder average of the

weight of the overlap distribution falling in that middle region (see Eq. 3.3). Here, L = 9

systems clearly have smaller IJ(0.2), but as we mentioned earlier in this section, we will

not draw any conclusion from the smaller value of I(0.2) for L = 9 only. All other values

are within each others error bars for the 4D EA model, similar to what has been observed

for the 3D EA model.

Following the same path as in our previous chapter, we now consider not only the aver-

ages, but other statistics of individual PJ(q)’s as well. We are interested in the δ functions

in individual probability distributions, and if they occur more and more frequently as we

go to larger and larger systems. To do that, we use ∆(q0, κ), defined in Eq. 4.4. Figure 5.4
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shows a plot of ∆(q0, κ) vs N for κ = 1 and q0 = 0.2 and 0.4 for both the 4D EA and SK

models. Here we can easily make the same observation as we did when comparing the 3D

EA model with the SK model: ∆(q0, κ) for the SK model increases much faster compared

to the ∆(q0, κ) of the 4D EA model. Once again in the plot we see a slight decrease for the

largest system size of L = 9, and if true, this would be the first evidence we observe for

the onset of the scenario predicted by the droplet picture, namely ∆(q0, κ) going to zero.

However, we feel we need at least one more, larger system size in comparison, and proof

that all samples are fully equilibrated, to be able to reach a definite conclusion. Finally,

Figures 5.5 and 5.6 are examples of different, less ideal choices of κ. Both plots only be-

come informative for the largest few systems, therefore making it hard to deduce general

trends from.

In conclusion, the observations made on the 4D EA model agree qualitatively with the

results we obtained from the 3D counterpart. At low temperature, it behaves differently

compared to the SK model, suggesting a different picture from the RSB hypothesis.

5.3 Additional statistics from P (q)

A recent paper by Alan Middleton suggests various ways to extract useful informa-

tion from the overlap probability distribution [45]. He considers the quantity IJ(q0) =∫ +q0
−q0 PJ(q)dq, and defines its sample median as Ĩ(q0), in addition to the mean of the same

function, I(q0). We decided to compare the mean I(q0) and the median Ĩ(q0) for our data,

and Figures 5.7, 5.8 and 5.9 show both quantities on log-linear plots for the 3D EA, 4D

EA and SK models as a function of q0, respectively. For small values of q0, Ĩ(q0) is clearly

smaller than I(q0) for all models, indicating that the average is actually determined by a

few samples with very large IJ(q0) values. Additionally, we see that for the small q0 values

Ĩ(q0) decreases with system size, whereas it would go the opposite way for large q0 values.

We observe a cross-over roughly around q0 = 0.6 for all models. In conclusion, we noticed

that for the SK model, the I(q0) and Ĩ(q0) values are closer to each other then they are for
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Figure 5.4. Fraction of peaked samples ∆(q0, κ) at T ≈ 0.5Tc as a function of N for
κ = 1, q0 = 0.2 and 0.4.
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Figure 5.7. Log-Linear Ĩ(q0) (median) plot for the 3d EA model at T ∼ 0.42. The dashed
lines indicate I(q0) (mean).

both EA models, but we did not see a clear qualitative difference between the EA and the

SK models otherwise.

Shortly after Middleton’s paper, another observable based on the overlap probability

distribution was introduced by Monthus and Garel [46], called the “typical value” P typ(q).

It is constructed in the following way

P typ(q) = exp(lnPJ(q)), (5.2)

where the bar above indicates an average over disorder realizations. The difference from

the usual average probability distribution P (q) is that here we take the logarithm of indi-

vidual PJ(q)s, then average those before finally taking the exponential of that average. The

purpose of this procedure is to avoid the disproportionate contribution to the average from
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rare samples with large values of PJ(q) and to observe the true typical behavior. The same

procedure can be done for IJ(q0), thus obtaining an I typ(q0) value.

I typ(q0) = exp
(∫ +q0

−q0
lnPJ(q)dq

)
. (5.3)

These quantities should be easy enough to calculate, but because of the limitations of our

data, we run into one important problem: Since we are simulating finite systems, PJ(q)

should actually be greater than zero for all q values, but many of our samples have zero

weight at smaller q values because of our finite run length in measuring PJ(q). This makes

it impossible to take the natural logarithm directly. To overcome this, we decided to do the

following: The smallest value possible to be generated by a simulation, ε, is equal to the

inverse of the total running time i.e. if a simulation is run for 227 time steps, ε = 2−27.

Thus, to estimate the effect of this lower limit, we replace all zero weights by a fixed

fraction of ε to calculate the P typ(q) and I typ(q0) with the hope that the results would be

independent of the choice of said fraction. Figures 5.10 to 5.15 show the log-linear plots of

these quantities, measured using ε/50 in place of zero, for all of our models.

We found out, however, that replacing the zero weights by a fixed fraction of ε creates

a strong dependence on that fraction, an example of which can be seen in Fig. 5.16. This

is the case because a considerable percentage of our samples have PJ(q) = 0 for smaller

q values. To give an example, 20% of the samples of the size L = 8 3D EA model have

PJ(0) = 0. Therefore, conclusions drawn from the quantities P typ(q) and I typ(q0) can

be misleading, since there is no clear way of accurately estimating typical values due to

artifacts created by our finite run length. For completeness sake, we still saw fit to include

these calculations, so that they may constitute a starting point for further research, but

while the typical values P typ(q) and I typ(q0) may have theoretical value, their accurate

measurement in MC simulations does not appear to be feasible.

74



10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

-1 -0.5 0 0.5 1

P
ty
p
(q
)

q

L = 4
L = 6
L = 8
L = 10
L = 12

Figure 5.10. Log-Linear P typ(q) plot for the 3d EA model at T ∼ 0.42. All zeros were
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Figure 5.11. Log-Linear P typ(q) plot for the 4d EA model at T ∼ 0.9. All zeros were
replaced by ε/50.
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Figure 5.12. Log-Linear P typ(q) plot for the SK model at T ∼ 0.42. All zeros were
replaced by ε/50.
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Figure 5.13. Log-Linear I typ(q) plot for the 3d EA model at T ∼ 0.42. All zeros were
replaced by ε/50.
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Figure 5.14. Log-Linear I typ(q) plot for the 4d EA model at T ∼ 0.9. All zeros were
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Figure 5.15. Log-Linear I typ(q) plot for the SK model at T ∼ 0.42. All zeros were
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5.4 Windows

A method developed to define the infinite-volume limit for disordered systems theo-

retically is to consider fixed volumes, or ‘windows’, embedded in systems of successively

larger sizes [49, 44, 41]. This method originates from the concern that for small system

sizes, the chosen boundary conditions would introduce domain walls to the system, causing

droplet-like excitations. Consequently, if only a small window far away from the boundary

is considered, where such a domain wall would be unlikely to go through, more accurate

observations can be made.

We wanted to test this idea numerically by selecting a window inside the system and

comparing the observables obtained from that window only with the measurements on

larger windows, the whole system, or even another system with the same size as the selected

window. To do that, we took measurements on all but the largest system sizes of the 3D

EA model for such windows. For example for a size L = 10 system we collected data for

overlaps for cubic windows of size l = 4, 6 and 8. Here we present what we have observed

in two ways: First, we compare the effects of the size l of a window in a large system of

L = 10 of the 3D EA Model, at T = 0.2 (Scenario A). Next, we address the main concern

described above by investigating how a fixed window of l = 4 behaves when simulated as

a part of different system sizes L, again at T = 0.2 (Scenario B).

As with previous experiments, we start by looking at the disorder-averaged overlap

probability distribution P (q). P (q) is symmetrical, and since the main divergence occurs

at the qEA peaks, in Figures 5.17(a) and 5.17(b) we are showing the large-q behavior, since

in the region around q = 0, the lines fall on top of each other. This fact can be better seen

in Fig. 5.18, where we plotted I(q0) for a small region of q0 = 0.2. The fluctuations in both

cases are quite small. The finite size effects, however, are still significant as can be seen by

the changing heights and positions of the peaks in Fig. 5.17(a). The right version (b) does

not indicate to such change, with the exception of our smallest system size L = 4, which is

the same size as our chosen window.
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Now we can look for the emergence of δ functions in individual PJ(q)’s for scenario A,

by increasing the window size within the same system, as well as for scenario B, simulating

the same size window as part of larger and larger systems. Fig. 5.19 shows ∆(q0, κ) defined

in Eq. 4.4 for scenario A, and Fig. 5.20 for scenario B. We first see that increasing the

window size affects ∆(q0, 1), and more and more δ functions emerge at first. But this

increase is rather slow, showing the possibility of reaching a plateau, as we have seen the

system behave in Fig. 4.6 of the previous chapter. In the following figure corresponding

to Scenario B, however, we see no effect on ∆(q0, κ) from the increase in system size,

as long as we keep the window size the same. This, combined with what we observe in

Fig. 5.17(b) is actually a striking result, since it indicates that looking at a small window

of size l embedded in a larger system of size L does not give any different results than

considering the window alone, l = L.

Both figures show that we are not able to gain significant additional insights about the

nature of the low temperature behavior of the 3D EA model by looking at the windows in

the way we did. Larger systems will have to be simulated, with varying windows inside

them measured separately, in order to gain further information, but for now, our original

way of considering whole systems seems to be a better way of analyzing this model. The

main conclusion that we can draw from this experiment is that results obtained from win-

dows are not significantly different than those obtained from full systems.

5.5 Changing the boundary conditions

In this section we briefly mention the effects of boundary conditions (BC) [27] by pre-

senting a preliminary study we did on ∼ 1000 samples of size L = 8 of the 3D EA model.

In all of our previous studies, we only considered periodic BC in all directions with the

hope of minimizing finite size corrections. An equally valid choice would be to use an-

tiperiodic BC in one, a few, or all directions, yielding eight possible choices of BC in total.

Here we wanted to test if such a choice would have any effect on the samples simulated, es-
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Figure 5.19. Fraction of peaked samples ∆(q0, κ) at T = 0.2 for different windows l in
the system size L = 10. Here κ = 1 and q0 = 0.2 and 0.4. We observe a slow increase in
∆ as the window size increases.
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Figure 5.20. Fraction of peaked samples ∆(q0, κ) at T = 0.2 for a window of size l = 4
in varying system sizes L. Here κ = 1 and q0 = 0.2 and 0.4. Changing the system size
simulated does not seem to have any effect on ∆, if the size of the window considered
remains the same.
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pecially on the value of IJ(0.2), given that the bond configuration {Jij} remained the same

except on the boundary. We chose such samples that have a large IJ(0.2) value (large com-

pared to ε defined in Sec. 5.3), and we stopped trying different BC once we encountered

one that would result in IJ(0.2) < ε. This test provided us with one interesting observa-

tion: For every single one of our disorder realizations, at least one choice of BC resulted in

IJ(0.2) being smaller than ε. We believe this is a line of research worth pursuing, since it

indicates that some observables, especially IJ(0.2) may be sensitive to BC. Therefore, for

future work, simulating an ensemble with all eight BC and then averaging over those can

be considered.

5.6 Conclusions

In this chapter we wanted to fill in some of the details left out in the previous chapter, as

well as make use of the newest developments in the field that came after the paper [73] on

which Ch. 4 is based was published. We showed results of another simulation, this time of

the 4D EA model, looked at some interesting quantities such as Ĩ(q0) and P typ(q), and did

some preliminary work to motivate future projects. The observations made in this chapter

in general seem to lend further support to our conclusion in the previous chapter, namely

that the EA model, both in 3D and 4D, does not seem to behave mean-field-like, i.e. it does

not display a trend towards many pairs of pure states as opposed to only a single pair. In

the following chapter we try to elaborate on what can be done in terms of future research

to investigate this point further.
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CHAPTER 6

SUMMARY AND FUTURE RESEARCH

Our main purpose in this study was to understand the low temperature behavior of spin

glasses, and to answer the question at the heart of a controversy which has been occupying

many physicists’ minds for decades: Are there only a single pair or a countable infinity of

pure states in the low temperature phase of the Edwards-Anderson spin glass?

To that end, we started first by giving a short description of spin glasses and their

history, then briefly explained what the controversy is by describing the competing theories

and subsequent attempts at uniting those.

For our research we have undertaken a massive numerical study, using the parallel tem-

pering Monte Carlo algorithm, and in our second chapter we introduced this method of

simulation. We discussed how this algorithm works and why it is well suited to simulate

spin glasses and explained how we implemented it using the C++ programming language.

In the following chapter, we proceeded to explain how and how effective this algorithm

works, by laying out the observations we made by carefully studying the simulation dy-

namics. From these dynamics studies we found out that the degree of roughness of the

free-energy landscape of each individual disorder realization sample was directly affecting

the sample’s equilibration time. That the equilibration time scales are broadly distributed

across samples has been known and identified as a potential problem before [1, 2], and

we came to the conclusion that this influence of the free energy landscape is the reason

why different samples would equilibrate in different time frames. By using the overlap

probability distribution as a proxy for the free energy landscape, we concluded that ideally,

individual realizations need to be individually tested to ensure complete equilibration. As
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a more viable method, we have shown that a conservative application of the Katzgraber-

Young equilibration test [31] would be sufficient for further studies.

In Ch. 4 we then proceeded to present our observations made on systems at equilibrium.

Of those observations, arguably the most striking concerns a new statistic we introduced.

∆(q0, κ), as it is called, can distinguish between the many-pairs and the single-pair scenar-

ios by detecting the fraction of samples with δ function behavior in PJ(q) near the origin.

An increase of this fraction with increased system size would indicate a trend towards the

many-pairs picture, and a decrease would point towards a single-pair scenario. We first

tested ∆(q0, κ) on the fully understood Sherrington-Kirkpatrick model and confirmed that

it does indeed behave as expected from the RSB picture and show many-pairs behavior.

For the EA model, however, we have seen that it behaved differently, increasing slowly at

first and then leveling off, which showed that the mean field solution (and the many-pairs

hypothesis) was not able to explain this model’s properties. At the end of that chapter we

addressed a scaling theory attempting to reconcile our data with the RSB picture [9], and

showed that the theory presented in their comment does not explain our EA data.

The results obtained in Ch. 4, when published [73], generated considerable interest,

and many studies came out suggesting additional statistics that would show the same effect

[45, 46]. We tried to answer these in our final chapter, and we presented results of an

additional simulation, the 4D EA model, as well. We finished up with some preliminary

studies to motivate further research.

Our main conclusion from this entire study is that the low temperature phase of the EA

model does not seem to be mean-field like. We believe this to be a major contribution to

the discussion in the field, and some of the observations we have made can be used as a

starting point for further exploration. First of those future projects should be to expand on

the 4D EA model. Due to equilibration concerns on our largest system size L = 9, we

could not make a firm statement about the ∆ data. It would be interesting to run longer

simulations of that system size, as well as obtain data for one or ideally two larger system
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sizes to see if the observed trends hold, and if ∆ indeed starts to decrease with increasing

system size. This would be a striking result, since it would mean the onset of a single-pair

scenario. Additionally, simulating larger systems for all of our models would be desirable.

In the end, our aim is to be able to draw conclusions about the thermodynamic limit, and

larger systems would therefore make stronger statements.

Another interesting project to undertake would be to carefully consider all possible

boundary conditions (BC), and the effects of changing those on various observables. From

our preliminary results in Sec. 5.5 we have seen that the weight of the overlap probability

distribution around zero, IJ(0.2), is already susceptible to the changes in BC, and therefore

an average over all boundary conditions described there may give a more accurate reading

of that quantity. If other statistics are also susceptible, conclusions drawn based on such an

average instead of only the periodic BC would carry more weight, in our opinion.

Furthermore, for our equilibrium studies, we have only considered statistics from the

spin overlap q. But it has been shown that the link overlap

ql =
1

Nb

∑
〈i,j〉

sαi s
α
j s

β
i s

β
j (6.1)

is equally interesting [15]. It would make sense to carry out a similar analysis to what

we did with q on the ql data, to look for other characteristic features there. Finally, we

choose our couplings from a Gaussian distribution. An alternative would be to consider the

bimodal case, where the couplings can be ±J with 1/2 probability.
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APPENDIX A

DETAILED BALANCE FOR PARALLEL TEMPERING

In a set of N replicas, the probability of a swap move between two replicas X and X ′

at inverse temperatures β and β′ can be obtained using the detailed balance condition [54].

To do that, we start with the partition function for the whole system:

ZEXT =
N∏
i=1

Z(βi), (A.1)

where

Z(βi) =
∑
{Xi}

exp[−βiH(Xi)]. (A.2)

For a given set of β’s, (β1, ..., βN), the probability of picking a configurationX = (X1, ..., XN)

is

P (X; β1, ..., βN) =
1

ZEXT
exp

[
−

N∑
i=1

βiH(Xi)

]
. (A.3)

Now we can define a Markov process for this extended system. To do this we first need

to define a transition probability matrix W (X, β;X ′, β′). Here we can use the detailed

balance condition for this system, given as

P (..., X, ..., X ′, ...; ...β, ..., β′, ...)W (X, β;X ′, β′) =

P (..., X ′, ..., X, ...; ...β, ..., β′, ...)W (X ′, β;X, β′). (A.4)

Inserting Eq. (A.3) to the previous equation we obtain

W (X, β;X ′, β′)

W (X ′, β;X, β′)
= exp(−∆), (A.5)
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where ∆ = (β′ − β)(H(X)−H(X ′)). The Metropolis solution is

W (X, β;X ′, β′) =


1, ∆ < 0.

exp(−∆), ∆ > 0.

(A.6)

Hence we arrive to the swap probability given in Eq. (2.1)

p = min[1, e(β−β
′)(E−E′)], (A.7)

where E = H(X) and E ′ = H(X ′).
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APPENDIX B

HANDLING THE DATA

In this appendix we want to briefly explain our process of generating, analyzing and

presenting the data, as well as the computational tools we use.

In the beginning we have our main C++ code with a check-pointing routine that, at a

given point of the simulation, stores not only the observables but also the exact coordinates

of the random number generator. Therefore, if need arises, we can continue the simulation

from that point on any time, as if the process has never been interrupted. This is useful

for many reasons. First of all, since our calculations require considerable running times,

an accidental interruption is always a possibility. And second, check-pointing gives us

the opportunity to do a longer run, or measure other observables once the equilibration is

reached, even at a later time, just by initiating the code from the stored file.

Once the main code is run, data files with a lot of information are generated. Since we

store many observables and their evolutions in time, these files consist of many sections

and can get up to 1GB in size for each individual realization. Considering there are thou-

sands of realizations for each system size of all models we investigate, a careful selection

and extraction of the needed portions is necessary before analyzing the data. To facilitate

this process, we make sure that every section of the data file is labeled correctly at the

beginning, and those label lines always start with the symbol # for easier identification.

Additionally, we start each data file with a basic information section where we state the

simulation parameters, such as the system size, duration of the run in terms of time steps,

the seed for the random number generator and the temperature set. For the selection and
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extraction of necessary portions of the data, we use unix bash scripts, and a sample script

with various key command examples can be seen below.
1 #!/ bin /bash
2

3 # Find all files in format S8∗. txt , erase the common beginning and end,
4 # then write the remaining part of the file names on a . txt file :
5 for FILE in S8∗. txt ; do echo $FILE | sed −e”s/S8//” −e”s/. txt // ”; done > List . txt
6

7 #Copy all files in that List into a new folder :
8 cat List . txt | while read NAME; do cp S8$NAME’.txt’ NewFolder/ ; done
9

10 for FILE in S8∗ #Find all files starting with S8,
11 do
12 #open all files and find the second number in the top 13 lines
13 cat $FILE | awk ’{if (NR<14) {print $2}}’
14 done > NewFile.txt #Print them out in a new file .
15

16 #OR print the numbers into individual files , using the original file name as identifier :
17 for FILE in S8∗. txt
18 do
19 NAME=‘echo $FILE | sed −e”s/S8//” −e”s/.txt // ”‘
20 cat S8 $NAME’ 0.txt’ | awk ’{if (NR<14) {print $2}}’ > Numbers $NAME.txt
21 done
22

23 #Find a particular phrase in all matching files using ’grep’ command,
24 #and print the numbers following that phrase into a new file :
25 for file in S8∗. txt
26 do
27 cat $file |grep ”# Number of round trips :” | sed −e”s/# Number of round trips :// ”
28 done > NewFile.txt

The final analysis is done using a combination of such scripts, as well as simple C++

codes, depending on what quantities or characteristics we are looking for. Last but not

least, we plot our results and do any necessary fitting on those using gnuplot.
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